Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Infect Dis ; 76(10): 1761-1767, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-2307617

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in solid organ transplant (SOT) recipients is associated with poorer antibody response (AbR) compared with non-SOT recipients. However, its impact on the risk of breakthrough infection (BI) has yet to be assessed. METHODS: Single-center prospective longitudinal cohort study enrolling adult SOT recipients who received SARS-CoV-2 vaccination during a 1-year period (February 2021 - January 2022), end of follow-up April 2022. Patients were tested for AbR at multiple time points. The primary end-point was BI (laboratory-confirmed SARS-CoV-2 infection ≥14 days after the second dose). Immunization (positive AbR) was considered an intermediate state between vaccination and BI. Probabilities of being in vaccination, immunization, and BI states were obtained for each type of graft and vaccination sequence using multistate survival analysis. Then, multivariable logistic regression was performed to analyze the risk of BI related to AbR levels. RESULTS: 614 SOT (275 kidney, 163 liver, 137 heart, 39 lung) recipients were included. Most patients (84.7%) received 3 vaccine doses. The first 2 consisted of BNT162b2 and mRNA-1273 in 73.5% and 26.5% of cases, respectively. For the third dose, mRNA-1273 was administered in 59.8% of patients. Overall, 75.4% of patients reached immunization and 18.4% developed BI. Heart transplant recipients showed the lowest probability of immunization (0.418) and the highest of BI (0.323); all mRNA-1273 vaccine sequences showed the highest probability of immunization (0.732) and the lowest of BI (0.098). Risk of BI was higher for non-high-level AbR, younger age, and shorter time from transplant. CONCLUSIONS: SOT patients with non-high-level AbR and shorter time from transplantation and heart recipients are at highest risk of BI.


Subject(s)
COVID-19 Vaccines , COVID-19 , Organ Transplantation , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , Breakthrough Infections , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunity , Longitudinal Studies , Organ Transplantation/adverse effects , Prospective Studies , SARS-CoV-2 , Vaccines
2.
Microorganisms ; 11(3)2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2271168

ABSTRACT

Patients with heart transplantation (HT) have an increased risk of COVID-19 disease and the efficacy of vaccines on antibody induction is lower, even after three or four doses. The aim of our study was to assess the efficacy of four doses on infections and their interplay with immunosuppression. We included in this retrospective study all adult HT patients (12/21-11/22) without prior infection receiving a third or fourth dose of mRNA vaccine. The endpoints were infections and the combined incidence of ICU hospitalizations/death after the last dose (6-month survival rate). Among 268 patients, 62 had an infection, and 27.3% received four doses. Following multivariate analysis, three vs. four doses, mycophenolate (MMF) therapy, and HT < 5 years were associated with an increased risk of infection. MMF ≥ 2000 mg/day independently predicted infection, together with the other variables, and was associated with ICU hospitalization/death. Patients on MMF had lower levels of anti-RBD antibodies, and a positive antibody response after the third dose was associated with a lower probability of infection. In HT patients, a fourth dose of vaccine against SARS-CoV-2 reduces the risk of infection at six months. Mycophenolate, particularly at high doses, reduces the clinical effectiveness of the fourth dose and the antibody response to the vaccine.

3.
Int J Environ Res Public Health ; 19(12)2022 06 16.
Article in English | MEDLINE | ID: covidwho-1896867

ABSTRACT

In the last two years, the world has been overwhelmed by SARS-CoV-2. One of the most important ways to prevent the spread of the virus is the control of indoor conditions: from surface hygiene to ventilation. Regarding the indoor environments, monitoring the presence of the virus in the indoor air seems to be promising, since there is strong evidence that airborne transmission through infected droplets and aerosols is its dominant transmission route. So far, few studies report the successful detection of SARS-CoV-2 in the air; moreover, the lack of a standard guideline for air monitoring reduces the uniformity of the results and their usefulness in the management of the risk of virus transmission. In this work, starting from a critical analysis of the existing standards and guidelines for indoor air quality, we define a strategy to set-up indoor air sampling plans for the detection of SARS-CoV-2. The strategy is then tested through a case study conducted in two kindergartens in the metropolitan city of Milan, in Italy, involving a total of 290 children and 47 teachers from 19 classrooms. The results proved its completeness, effectiveness, and suitability as a key tool in the airborne SARS-CoV-2 infection risk management process. Future research directions are then identified and discussed.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Air Pollution, Indoor/prevention & control , COVID-19/diagnosis , Child , Humans , SARS-CoV-2 , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL